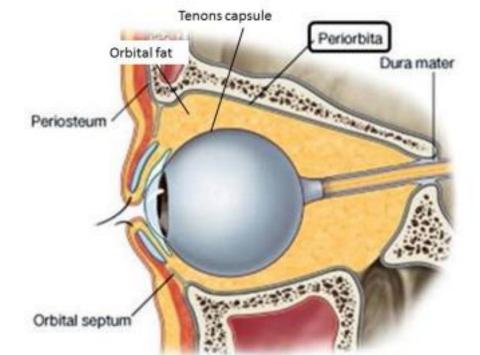


Protective mechanism in the Eye



- Several mechanism exist to protect the eye from external injury.
- Mechanism of potential damages to the eye can ocular as:
 - 1. Mechanical
 - 2. Chemical
 - 3. Biological
 - 4. Electromagnetic radiation

1. Protection from mechanical damage optimisiant

► The orbit:

- The orbital fat and bony walls support and provide protection for the eye and orbital tissues.
- The orbital fat acts as a semi-fluid padding that cushions the eye providing some shock absorption.

1. Protection from mechanical damage option Single

► The eyelids:

- The eyelids provide a mechanical barrier between the eye and external environment, rapidly closing on reflexive or voluntary blinking.
- Cilia (modified fine hairs) on the eyelid skin are highly sensitive to airborne particles; when stimulated, they elicit a blink reflex

The corneoscleral shell

- ▶ The corneoscleral shell provides tensile strength to the globe.
- Dense corneal innervation allows for rapid blink and withdrawal reflexes.
- Corneal innervation also provides trophic factors that promote epithelial healing

2. Protection from chemical damag

1. Eyelid closure

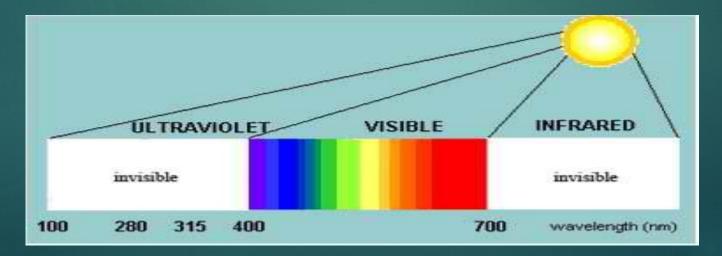
- ▶ Reflex blinking provides rapid closure of the eye in response to splash or foreign body sensation.
- 2. Bell's phenomenon
 - A normal Bell's phenomenon provides involuntary upward and inward rotation of the globe on lid closure, removing the cornea from noxious stimuli.
- 3. Tears
 - Tear flow increases in response to mechanical or noxious stimuli.
 - ▶ This causes dilution and washout of the irritant.
- 4. Corneal epithelial barrier
 - ▶ The corneal epithelium is 5–7 layers thick with cells adjoined by desmosomes.
 - Tight junctions (zonulae occludens) surround the most superficial corneal epithelial cells providing a low conductance barrier to fluid and solutes

3. Protection from biological damageron Signation

1. Tear film and conjunctiva:

- . Glycocalyx and mucous layer
 - Mucins in the glycocalyx (conjunctival cell membrane-bound mucin) and the mucous layer of the tear film provide a physical barrier to pathogens and can trap microorganisms.
- II. Aqueous layer
 - The aqueous layer has several antibacterial constituents including secretory immunoglobulin A (IgA), lysozyme, and lactoferrin.
- III. Normal conjunctival flora
 - The normal bacterial flora may inhibit survival of more pathogenic species .
- IV. Natural killer cells
 - Present in the conjunctiva, natural killer cells may have a role in restricting the spread of viral infection or tumors.

3. Protection from biological damageron Scient


- 2. Corneal epithelium and Bowman's layer
 - ▶ These act as physical barriers against ocular penetration by microbial pathogens.

- 3. Descemet's membrane
 - Descemet's membrane is resistant to proteolysis in severe corneal infections, maintaining the integrity of the globe

4. Protection from electromagnetic radiation option Signature

1. Eyelid closure

- The dazzle reflex: bright light induces reflexive blinking
- 2. Pupil constriction
 - Rapid pupil constriction in response to bright light limits excessive radiation exposure to the ocular media internal to the iris

4. Protection from electromagnetic radiation

- 3. Light absorption by ocular tissues
 - ▶ The cornea and sclera absorb ultraviolet (UV)-B, UV-C, infrared (IR)-B, and IR-C.
 - ► The crystalline lens absorbs UV-A.
 - Antioxidants in the lens and macula prevent excessive UV-induced oxidative damage.

OPTOM

- The yellow macular carotenoid xanthophyll pigments in Henle's fibre layer absorb short wavelength radiation
- Hemoglobin and melanin, principally found in the choroid, absorb excessive light and IR radiation.